W dniach 26.02.2024 – 01.03.2024 członkowie projektu uczestniczyli w LI Szkole Zimowej Akustyki Środowiska i Wibroakustyki. Zorganizowane zostało spotkanie dotyczące przewodnika dobrych praktyk, które poprowadzone zostało przez Prof. Annę Preis. Podczas konferencji SZASiW zostały zaprezentowane rezultaty dotychczasowej pracy.
W dniach 20-23 lutego 2024 roku reprezentacja zespołu badawczego HETMAN z Uniwersytetu im. Adama Mickiewicza w Poznaniu odwiedziła współpracujący w projekcie norweski instytut badawczy SINTEF z siedzibą w Trondheim.
W trakcie pobytu trwały prace nad przewodnikiem dobrych praktyk w zakresie zarządzania hałasem turbin wiatrowych, który ma być wynikiem całego projektu. W przerwie od pracy, w trakcie seminarium omówiona została struktura funkcjonowania instytutu SINTEF oraz zakres prowadzonych przez niego badań.
Wyjazd był świetną okazją zarówno dla rozwoju prac, jak i do nawiązania lepszych relacji z norweskimi partnerami.
Zapraszamy na wykład „Hałas turbin wiatrowych i jego percepcja” – prof. dr hab. Anna Preis, prof. dr hab. Rufin Makarewiczhttps://www.fizyka.amu.edu.pl/
31 sierpnia 2023 roku w Poznaniu na Wydziale Fizyki Uniwersytetu im. Adama Mickiewicza w Poznaniu odbyło się spotkanie robocze projektu HETMAN. Na spotkaniu przedstawione oraz omówione zostały postępy prac w grancie oraz zaplanowano kolejne działania. Ważnym punktem tego wydarzenia było zaprezentowanie przez grupę roboczą WP6 swojego autorskiego projektu – niskokosztowego systemu monitorowania hałasu turbin wiatrowych.
The results of wind turbines (WTs) noise calculations, calibrated with the outcomes of multi point continuous noise monitoring around the wind farm (WF) are presented in the paper. The Nord2000 noise calculation method was used to obtain contours of LAeq, taking into account instantaneous WTs parameters, its horizontal directivity and meteorological conditions . Noise contours of LAeq around a single WT are not symmetrical due to wind direction and directivity of WT. This is why sound levels in the noise protected (residential) areas around WF are not always the same. Usually, LAeq may be reduced by a few decibels by switching WT into noise reduced mode. Using an on-line -real time calibrated – calculation model this can be applied only to a selected WT influencing sound levels at a given area where current conditions might cause noise complaints (while the other WTs can operate in a normal mode). There are factors that increase the probability of noise complaints, such as amplitude modulation, as well as decrease this probability, such as masking effect of wind induced noise or high ambient noise which should also be taken into account while setting the current operation mode of individual WTs.
W dniach 11-15 sierpnia 2023 roku członkowie projektu uczestniczyli w międzynarodowej konferencji Forum Acousticum w Turynie. Referaty zostały przedstawione czwartego i piątego dnia konferencji podczas sesji zatytułowanej “Outdoor machinery, including wind turbines and low frequency sources”, której przewodniczyli PhD Frits van den Berg oraz PhD Luca Fredianelli.
Noise annoyance is one of the most common non-health effects of noise. Although related to sound levels in some way, annoyance ratings do not depend on this factor alone. Other factors are discussed, including a measurement condition. Researchers ask people to rate annoyance in their homes or in laboratory conditions. Some studies suggest that the results from these two conditions cannot be compared because different non-acoustic factors influence people’s judgments. To answer this question, we conducted a study in which people were asked to rate the annoyance of the same noise stimuli in both conditions. The results obtained so far show that there are no statistical differences for all noise levels.
The industrial noise calculation method, which includes wind farm noise, is defined in Polish regulations and Directive 2002/49/EC. According to these documents, the method described in the ISO 9613-2 covering the frequency range from 63 Hz to 8 kHz should be used. However, wind turbines are also a source of the low-frequency noise in the band from a few Hz and thus well below the lower frequency of the existing models calculation range. These sounds are described as rumbling or pulsing, which is a source of annoyance to people living near wind turbines. Therefore, propagation of the low-frequency component should be modelled at the predicting acoustic impact stage of wind turbines on the environment. The paper reviews modelling methods in the low-frequency range and verifies the suitability of ISO 9613-2, CNOSSOS-EU and NORD2000 algorithms for modelling low-frequency noise including frequencies below 63 Hz. The results of the calculations were compared with the results of measurements carried out around the wind farm.
This research has been founded by the National Centre for Research and Development – project No. NOR/POLNOR/Hetman/0073/2019 and by the Polish Ministry of Science and Higher Education – project No. 16.16.130.942.
The paper presents a comparison analysis of the noise generated by wind turbines and the one generated by a ventilation shaft of a working coal mine. The aim of the research was to compare the frequency and amplitude distribution of those sources, especially in the infra range. The ultimate aim it is evaluate possible environmental impact on human annoyance or severity. During the research noise signals were recorded utilizing low frequency microphones, shielded by windscreens. Microphones were localized at the heights of 0.0 m, 1.5 m (approximate location of a human ear in a standing position) and 4 m. Additionally, a measurement position of a microphone in relation to the ground surface was observed. Measurements at ground level were performed according to the standard PN-EN 61400-11:2013-07 and in vertical position, where the microphone was mounted „upside down” with the grid flush with the board. The possible influence of wind speed was also monitored. The results of the measurements are discussed.
Wind turbine (WT) noise is commonly reported to be very annoying. There is a consensus in the literature that this is mainly due to the non-stationary nature of the signal, which is modulated by the movement of the blades. However, measuring and recording such noise is very difficult due to the fact that in most cases a single wind turbine is only one part of a larger complex (consisting of dozens of them). In this paper we describe a laboratory experiment in which people were asked to rate the annoyance of WT noise as a function of distance from a WT. Wind turbine noise was recorded from both sides, downwind and in line with the rotor plane. The results suggest that annoyance ratings decrease with increasing distance from a WT and that noise recorded from the side (in line with the rotor plane) is slightly more annoying than that recorded downwind. In addition, the RT used as reference noise was the least annoying source.